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Abstract: The error in an artificial neural network is a function of adaptive parameters
(weights and biases) that needs to be minimized. Research on adaptive learning usually
focuses on gradient algorithms that employ problem–dependent heuristic learning param-
eters. This fact usually results in a trade–off between the convergence speed and the
stability of the learning algorithm. The paper investigates gradient–based adaptive algo-
rithms and discusses their limitations. It then describes a new algorithm that does not need
user–defined learning parameters. The convergence properties of this method are discussed
from both theoretical and practical perspective. The algorithm has been implemented and
tested on real life applications exhibiting improved stability and high performance.
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1 Introduction

Let us first define the notation we will use in the paper. We use a unified notation for the
weights. Thus, for a feedforward neural network (FNN) with a total of n weights, IRn is the
n–dimensional real space of column weight vectors w with components w1, w2, . . . , wn and w∗ is
the optimal weight vector with components w∗1 , w∗2 , . . . , w∗n; E is the batch error measure defined
as the sum–of–squared–differences error function over the entire training set; ∂iE(w) denotes the
partial derivative of E(w) with respect to the ith variable wi; g(w) =

(
g1(w), . . . , gn(w)

)
defines

the gradient ∇E(w) of the sum-of-squared-differences error function E at w, which is computed
by applying the chain rule on the layers of an FNN (see [48]), while H = [Hij ] defines the Hessian
∇2E(w) of E at w. Also, throughout this paper diag{e1, . . . , en} defines the n×n diagonal matrix
with elements e1, . . . , en, Θn = (0, 0, . . . , 0) denotes the origin of IRn and ρ(A) is the spectral radius
of matrix A.

The Back-Propagation (BP) algorithm [48] is widely recognized as a powerful tool for training
FNNs. It minimizes the error function using the Steepest Descent (SD) method [15] with constant
learning rate η:

wk+1 = wk − ηg(wk). (1)
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The SD method requires the assumption that E is twice continuously differentiable on an
open neighborhood S(w0), where S(w0) = {w : E(w) ≤ E(w0)} is bounded, for some initial
weight vector w0. It also requires that η is chosen to satisfy the relation sup ‖H(w)‖ ≤ η−1 < ∞
in the level set S(w0) [16, 17]. The approach adopted in practice is to apply a small constant
learning rate value (0 < η < 1) in order to secure the convergence of the BP training algorithm
and avoid oscillations in a direction where the error function is steep. However, this approach
considerably slows down training since, in general, a small learning rate may not be appropriate for
all the portions of the error surface. Furthermore, it affects the convergence properties of training
algorithms (see [25, 29]). Nevertheless, there are theoretical results that guarantee convergence
when the learning rate is constant. This happens when the learning rate is proportional to the
inverse of the Lipschitz constant which, in practice, is not easily available [2, 31].

Attempts to adaptive learning are usually based on the following approaches: (i) start with
a small learning rate and increase it exponentially, if successive iterations reduce the error, or
rapidly decrease it, if a significant error increase occurs [4, 56], (ii) start with a small learning rate
and increase it, if successive iterations keep gradient direction fairly constant, or rapidly decrease
it, if the direction of the gradient varies greatly at each iteration [8] and (iii) for each weight an
individual learning rate is given, which increases if the successive changes in the weights are in
the same direction and decreases otherwise. The well known delta-bar-delta method [18] and Silva
and Almeida’s method [49] follow this approach. Another method, named quickprop, has been
presented in [11]. Quickprop is based on independent secant steps in the direction of each weight.
Riedmiller and Braun in 1993 proposed the Rprop algorithm. The algorithm updates the weights
using the learning rate and the sign of the partial derivative of the error function with respect to
each weight. Note that all these adaptation methods employ heuristic learning parameters in an
attempt to secure converge of the BP algorithm to a minimizer of E and avoid oscillations.

A different approach is to exploit the local shape of the error surface as described by the direction
cosines or the Lipschitz constant. In the first case the learning rate is a weighted average of the
direction cosines of the weight changes at the current and several previous successive iterations [23],
while in the second case the learning rate is an approximation of the Lipschitz constant [31].

A variety of approaches adapted from numerical analysis have also been applied, in an attempt
to use not only the gradient of the error function but also the second derivative in construct-
ing efficient supervised training algorithms to accelerate the learning process. However, train-
ing algorithms that apply nonlinear conjugate gradient methods, such as the Fletcher–Reeves or
the Polak–Ribiere methods [34, 53], or variable metric methods, such as the Broyden–Fletcher–
Goldfarb–Shanno method [5, 58], or even Newton’s method [6, 39], are computationally intensive
for FNNs with several hundred weights: derivative calculations as well as subminimization pro-
cedures (for the case of nonlinear conjugate gradient methods) and approximations of various
matrices (for the case of variable metric and quasi-Newton methods) are required. Furthermore,
it is not certain that the extra computational cost speeds up the minimization process for noncon-
vex functions when far from a minimizer, as is usually the case with the neural network training
problem [5, 9, 35]. Thus, the development of improved gradient-based BP algorithms receives
significant attention of neural network researchers and practitioners.

The training algorithm introduced in this paper does not use a user–defined initial learning rate,
instead it self–determinates the search direction and the learning rates at each epoch. It provides
stable learning and robustness to oscillations. The paper is organized as follows. In Section 2
the class of adaptive learning algorithms that employ a different learning rate for each weight is
presented and the advantages as well as the disadvantages of these algorithms are discussed. The
new algorithm is introduced in Section 3 and its convergence properties are investigated in Section
4. Experimental results are presented in Section 5 to evaluate and compare the performance of
the new algorithms with several other BP methods. The paper ends, in Section 6, with concluding
remarks.
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2 Adaptive Learning and the Error Surface

The eigensystem of the Hessian matrix can be used to determine the shape of the error function E
in the neighborhood of a local minimizer [1, 18]. Thus, studying the sensitivity of the minimizer
to small changes by approximating the error function with a quadratic one, it is known that, in
a sufficiently small neighborhood of w∗, the directions of the principal axes of the corresponding
elliptical contours (n–dimensional ellipsoids) will be given by the eigenvectors of H(w∗), while the
lengths of the axes will be inversely proportional to the square roots of the corresponding eigenval-
ues. Furthermore, a variation along the eigenvector corresponding to the maximum eigenvalue will
cause the largest change in E, while the eigenvector corresponding to the minimum eigenvalue gives
the least sensitive direction. Therefore, a value for the learning rate which yields a large variation
along the eigenvector corresponding to the maximum eigenvalue may result in oscillations. On
the other hand, a value for the learning rate which yields a small variation along the eigenvector
corresponding to the minimum eigenvalue may result in small steps along this direction and thus,
in a slight reduction of the error function. In general, a learning rate appropriate for any one
weight direction is not necessarily appropriate for other directions.

Various adaptive learning algorithms with a different learning rate for each weight have been
suggested in the literature [11, 18, 33, 41, 46, 49]. This approach allows us to find the proper
learning rate that compensates for the small magnitude of the gradient in a flat direction in order
to avoid slow convergence, and dampens a large weight change in a steep direction in order to avoid
oscillations. Moreover, it exploits the parallelism inherent in the evaluation of E(w) and g(w) by
the BP algorithm.

Following this approach Eq. (1) is reformulated to the following scheme:

wk+1 = wk − diag{ηk
1 , . . . , ηk

n} g(wk). (2)

The weight vector in Eq. (2) is not updated in the direction of the negative of the gradient;
instead, an alternative adaptive search direction is obtained by taking into consideration the weight
change, evaluated by multiplying the length of the search step, i.e. the value of the learning rate,
along each weight direction by the partial derivative of E(w) with respect to the corresponding
weight, i.e. −ηi∂iE(w). In other words, these algorithms try to decrease the error in each direction,
by searching the local minimum with small weight steps. These steps are usually constraint by
problem–dependent heuristic parameters, in order to ensure subminimization of the error function
in each weight direction.

A well known difficulty of this approach is that the use of inappropriate heuristic values for a
weight direction misguides the resultant search direction. In such cases, the training algorithms
with an adaptive learning rate for each weight cannot exploit the global information obtained by
taking into consideration all the directions. This is the case of many well known training algorithms
that employ heuristic parameters for properly tuning the adaptive learning rates [11, 18, 33, 41,
46, 49] and no guarantee is provided that the weight updates will converge to a minimizer of E.
In certain cases the aforementioned methods, although originally developed for batch training, can
be used for on-line training by minimizing a pattern–based error measure.

3 A Theoretical Derivation of the Adaptive Learning Process

An adaptive learning rate algorithm (see Eq. (2)) seeks for a minimum w∗ of the error function
and generates with every training epoch a discretized path in the nth dimensional weight space.
The limiting value of this path, limk→∞ wk, corresponds to a stationary point of E(w). This path
depends on the values of the learning rates chosen in each epoch. Appropriate learning rates help
to avoid convergence to a saddle point or a maximum. In the framework of Eq. (2) the learning
process can theoretically be interpreted as follows.
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Starting from an arbitrary initial weight vector w0 ∈ D (a specific domain of E), the training
algorithm subminimizes, at the kth epoch, in parallel, the n one–dimensional function:

E(wk
1 , . . . , wk

i−1, wi, w
k
i+1, . . . , w

k
n). (3)

First, each function is minimized along the direction i and the corresponding subminimizer ŵi

is obtained. Obviously for this ŵi

∂iE(wk
1 , . . . , wk

i−1, ŵi, w
k
i+1, . . . , w

k
n) = 0. (4)

This is a one–dimensional subminimization because all other components of the weight vector,
except the ith, are kept constant. Then each weight is updated according to the relation:

wk+1
i = ŵi. (5)

In order to be consistent with Eq. (2) only a single iteration of the one–dimensional method
in each weight direction is proposed. It is worth noticing that the number of the iterations of
the subminimization method is related to the requested accuracy in obtaining the subminimizer
approximations. Thus, significant computational effort is needed in order to find very accurate
approximations of the subminimizer in each weight direction at each epoch. Moreover, the compu-
tational effort for the subminimization method is increased for FNNs with several hundred weights.
On the other hand, it is not certain that this large computational effort speeds up the minimization
process for nonconvex functions when the algorithm is away from a minimizer w∗ [37]. Thus, we
propose to obtain ŵi by minimizing Eq.(3) with one iteration of a minimization method.

The problem of minimizing the error function E along the ith direction

min
ηi≥0

E(w + ηi · ei) (6)

is equivalent to the minimization of the one–dimensional function

φi(η) = E(w + ηiei). (7)

Since we have n directions we consider n one–dimensional functions φi(η). Note that according
to experimental work [61] these functions can be approximated for certain learning tasks with
quadratic functions in the neighborhood of η ≥ 0. In general, we can also use the formulation
φ(η) = E(w + ηd), where d is the search direction vector and φ

′
(η) = ∇E(w + ηd)>d.

In our case, we want at the kth epoch to find the learning rate ηi that minimizes φi(η) along
the ith direction. Since E(w) ≥ 0, ∀w ∈ IRn then the w∗, such that E(w∗), minimizes E(w). Thus,
by applying one iteration of the Newton method to the one–dimensional equation φi(η) = 0 we
obtain:

η1
i = η0

i −
φi(η0)
φ

′
i(η0)

. (8)

But η0
i = 0 and φ

′

i(η
0) = g(w)>di. Since, di = ei the Eq.(8) is reformulated as

ηi = − E(wk)
∂iE(wk)

. (9)

This is done at the kth epoch in parallel, for all weight directions to evaluate the corresponding
learning rates. Then, Eq.(5) takes the form

wk+1
i = wk

i −
E(wk)

∂iE(wk)
. (10)
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Eq.(10) constitutes the weight update formula of the new BP training algorithm with an adaptive
learning rate for each weight.

The iterative scheme (10) takes into consideration information from both the error function
and the magnitude of the gradient components. When the gradient magnitude is small, the local
shape of E in this direction is flat, otherwise it is steep. The value of the error function indicates
how close to the global minimizer this local shape is. The above pieces of information help the
iterative scheme (10) to escape from flat regions with high error values, which are located far from
a desired minimizer.

4 Convergence Analysis

First, we recall two concepts which will be used in our convergence analysis.
1) The Property Aπ: Young [60] has discovered a class of matrices described as having property

A that can be partitioned into block–tridiagonal form, possibly after a suitable permutation. In
Young’s original presentation, the elements of a matrix A = [aij ] are partitioned into two groups.
In general, any partitioning of an n–dimensional vector x = (x(1), . . . , x(m)) into block components
x(p) of dimensions np, p = 1, . . . ,m (with

∑m
p=1 np = n) is uniquely determined by a partitioning

π = {πp}m
p=1 of the set of the first n integers, where πp contains the integers sp + 1, . . . , sp + np,

sp =
∑k−1

j=1 nj . The same partitioning π also induces a partitioning of any n × n matrix A into
block matrix components Aij of dimensions ni × nj . Note that the matrices Aii are square.

Definition 1 [3]: The matrix A has the property Aπ if A can be permuted by PAP> into a
form that can be partitioned into block–tridiagonal form, that is,

PAP> =


D1 L>1 O
L1 D2 L>2

. . . . . . . . .
Lr−2 Dr−1 L>r−1

O Lr−1 Dr

 ,

where the matrices Di, i = 1, . . . , r are nonsingular.
2) The Root–convergence factor: It is useful for any iterative procedure to have a measure of

the rate of its convergence. In our case, we are interested in how fast the weight update equation
(10), denoted P, converge to w∗. A measure of the rate of its convergence is obtained by taking
appropriate roots of successive errors. To this end we use the following definition.

Definition 2 [37]: Let {wk}∞k=0 be any sequence that converges to w∗. Then the number

R{wk} = lim
k→∞

sup ‖wk − w∗‖1/k
, (11)

is the root–convergence factor, or R–factor of the sequence of the weights. If the iterative procedure
P converges to w∗ and C(P, w∗) is the set of all sequences generated by P which convergence to
w∗, then

R(P, w∗) = sup{R{wk}; {wk} ∈ C(P, w∗)}, (12)

is the R–factor of P at w∗.
Our convergence analysis consists of two parts. In first part results regarding the local con-

vergence properties of the algorithm are presented. In the second part appropriate conditions are
proposed to guarantee the global convergence of the algorithm, i.e. the convergence to a minimizer
from any starting point.



6 G.D. Magoulas and M.N. Vrahatis

4.1 Local Convergence

In the first part, which concerns the local convergence of the algorithm the objective is to show
that there is a neighborhood of a minimizer of the error function for which convergence to the
minimizer can be guaranteed. Furthermore, it is interesting to evaluate the asymptotic rate of
convergence of the algorithm, i.e. the speed of the algorithm as it convergence to a minimizer. Of
course this is not necessarily related to its convergence speed when it is away from the minimizer.

Theorem: Let E : D ⊂ IRn → IR be twice continuously differentiable in an open neighborhood
S0 ⊂ D of a point w∗ ∈ D for which ∇E(w∗) = Θn and the Hessian, H(w∗) is positive definite
with the property Aπ. Then there exists an open ball S = S(w∗, r) in S0 such that any sequence
{wk}∞k=0 generated by P converges to w∗ which minimizes E and R(P, w∗) < 1.

Proof: Clearly, the necessary and sufficient conditions for the point w∗ to be a local minimizer
of the function E are satisfied by the hypothesis ∇E(w∗) = Θn and the assumption of positive
definitiveness of the Hessian at w∗ (see for example [37]). Finding such a point is equivalent to
obtaining the corresponding solution w∗ ∈ D of the following system:

∇E(w) = Θn, (13)

by applying the nonlinear Jacobi process [37] and employing any one–dimensional method for the
subminimization process [15, 37, 42, 43].

Now, consider the decomposition of H(w∗) into its diagonal, strictly lower–triangular and
strictly upper–triangular parts

H(w∗) = D(w∗)− L(w∗)− L>(w∗). (14)

Since, H(w∗) is symmetric and positive definite, then D(w∗) is positive definite [55]. Moreover,
since H(w∗) has the property Aπ, the eigenvalues of

Φ(w∗) = D(w∗)−1
[
L(w∗) + L>(w∗)

]
, (15)

are real and ρ(Φ(w∗)) = % < 1 [3]; then there exists an open ball S = S(w∗, r) in S0, such that,
for any initial weight vector w0 ∈ S, there is a sequence {wk}∞k=0 ⊂ S which satisfies the method
(10) such that limk→∞ wk = w∗ and R(P, w∗) = % < 1 [37, 44, 57]. Thus the Theorem is proved.

The proof of Theorem 1 shows that the asymptotic rate of convergence of the algorithm is
not enhanced if one takes more than one iteration of the one–dimensional minimization method.
Instead, the asymptotic rate of convergence only depends on the spectral radius ρ. Note also that
this theorem is applicable to any training algorithm that adapts a different learning rate for each
weight using one–dimensional subminimization methods and does not employ heuristics.

The local convergence analysis of the new algorithm was developed under appropriate assump-
tions and provides useful insight into the new method. However, in practice, neural network users
want a guarantee that the training algorithm will reduce the error at each epoch and that the
error will not fluctuate. Particularly, neural network practitioners are interested in techniques will
satisfy the above mentioned requirements when the inital weights are far from the neighborhood
of a minimizer. Unfortunately, it is well known that far from the neighborhood of a minimizer,
the error function has broad flat regions adjoined with narrow steep ones. It is possible that this
kind of morphology of the error function will cause the iterative scheme (10) to create very large
learning rates, due to the small values of the denominator, pushing the neurons into saturation
and thus the algorithm will exhibit pathological convergence behavior.

Therefore we want that the iterative scheme (10) will generate weight iterates that achieve
a sufficient reduction in the error function at each epoch. Only these weight iterates will be
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considered to be accepted. Searching for an acceptable weight vector rather than a minimizer
along the current search direction usually reduces the number of function evaluations per epoch
and the same goes for the total number of function evaluations required to successfully train the
FNN. This is due to the fact that training starts way from a local minimum of the error function and
exact minimization steps along the search direction do not usually help, because of the nonlinearity
of the error function. On the other hand, when the current iterate wk is close to the minimizer a
“better” approximator of the minimizer wk+1 can be found without much difficulty. This issues
are investigated below in the framework of global convergence of the algorithm.

4.2 Globally Convergent Algorithms

In order to ensure global convergence of the adaptive algorithm, i.e. convergence to a local mini-
mizer of the error function from any starting point, the following assumptions are needed [10, 24]:

a) The error function E is a real–valued function defined and continuous everywhere in IRn,
bounded below in IRn,

b) for any two points w and v ∈ IRn, ∇E satisfies the Lipschitz condition

‖∇E(w)−∇E(v)‖ ≤ L‖w − v‖, (16)

where L > 0 denotes the Lipschitz constant.

The effect of the above assumptions is to place an upper bound on the degree of the nonlinearity
of the error function and to ensure that the first derivatives are continuous in w. If these assump-
tions are fulfilled the algorithm can be made globally convergent by determining the learning rates
in such a way that the error function is exactly minimized along the current search direction at
each epoch. To this end an iterative search, which is often expensive in terms of error function
evaluations, is required. To alleviate this situation it is preferable to determine the learning rates
so that the error function is sufficiently decreased at each epoch, accompanied by a significant
change in the value of w.

The following conditions, associated with the names of Armijo, Goldstein and Price [37], are
used to formulate the above ideas and to define a criterion of acceptance of any weight iterate:

E(wk+1)− E(wk) ≤ σ1∇E(wk)>ηk, (17)

∇E(wk+1)>∇E(wk) ≥ σ2∇E(wk)>ηk, (18)

where 0 < σ1 < σ2 < 1 and ηk is the column vector (ηk
1 , . . . , ηk

n). Thus, by using appropriate
values for the learning rates we seek to satisfy Conditions (17)–(18): the first condition ensures
that using ηk

i , i = 1, . . . , n, the error function is reduced with every epoch of the algorithm and
the second condition prevents ηk

i , i = 1, . . . , n, from becoming too small. Furthermore, these
conditions can be used to enhance the new training algorithm with tuning techniques that are able
to handle arbitrary large learning rates. Note that the value σ1 = 0.5 is usually suggested in the
literature [2, 35].

A simple technique to tune the length of the minimization step, so that it satisfies Conditions
(17)–(18) at each epoch, is to decrease the learning rates by a reduction factor 1/q, where q > 1 [37].
This has the effect that each ηi is decreased by the largest number in the sequence {q−m}∞m=1,
so that the Condition (17) is satisfied. We remark here that the selection of q is not critical for
successful learning, however it has an influence on the number of error function evaluations required
to obtain an acceptable weight vector. Thus, some training problems respond well to one or two
reductions in the learning rates by modest amounts (such as 1/2) and others require many such
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reductions, but might respond well to a more aggressive learning rate reduction (for example by
factors of 1/10, or even 1/20). On the other hand, reducing ηi too much can be costly since the
total number of epochs will be increased. Consequently, when seeking to satisfy the Condition
(17) it is important to ensure that the learning rates are not reduced unnecessarily so that the
Condition (18) is not satisfied. Since, in the algorithm, the gradient vector is known only at the
beginning of the iterative search for an acceptable weight vector, the Condition (18) cannot be
checked directly (this task requires additional gradient evaluations at each epoch of the training
algorithm), but is enforced simply by placing a lower bound on the acceptable values of each ηi.
This bound on the learning rates has the same theoretical effect as Condition (18) and ensures
global convergence [10, 52].

Another approach to perform learning rates reduction is to estimate the appropriate reduction
factor at each iteration. This is achieved by modeling the decrease in the magnitude of the gradient
vector as the learning rates are reduced. To this end, quadratic and cubic interpolations are
suggested that exploit the available information about the error function. Relative techniques
have been proposed by Dennis and Schnabel [10] and Battiti [4].

5 Applications

In this section we give comparative results for five batch training algorithms in 1000 simulation runs:
Back-propagation with constant learning rate (BP); Back-propagation with constant learning rate
and constant Momentum [48], named BPM ; Adaptive Back-propagation with adaptive momentum
(ABP) proposed by Vogl [56]; Back-propagation with an adaptive learning rate for each weight
proposed by Silva and Almeida [49], named SA; Back-propagation with a self–determined learning
rate for each weight (BPS).

The selection of initial weights is very important in FNN training [59]. A well known ini-
tialization heuristic for FNNs is to select the weights with uniform probability from an interval
(wmin, wmax), where usually wmin = −wmax. However, if the initial weights are very small the
backpropagated error is so small that practically no change takes place for some weights and more
iterations are necessary to decrease the error [47, 48]. In the worst case the error remains constant
and the learning stops in an undesired local minimum [27]. On the other hand, very large values
of weights speed up learning but they can lead to saturation and to flat regions of the error surface
where training is considerably slow [28, 30, 47].

A common choice for the range of the initial weights is the interval (−1,+1) (see [21, 22, 40, 46]).
This interval has been used to randomly choose initial weights for our experiments. The values of
the heuristic learning parameters used in each problem are shown in Table 1. The initial learning
rate has been carefully chosen so that the BP algorithm indicates rapid convergence without
oscillating towards a global minimum and has been kept the same for all the algorithms tested.
Then all other heuristics have been tuned. For the momentum term m we have tried 9 different
values ranging from 0.9 to 0.1. Much effort has been made to properly tune the learning rate
increment and decrement factors, ηinc, u and ηdec, d, respectively. To be more specific, various
different values, up to 2, have been tested for the learning rate increment factor, while different
values between 0.1 and 0.9 have been tried for the learning rate decrement factor. The error ratio
parameter, denoted ratio in Table 1, has been set equal to 1.04. This value is generally suggested
in the literature [56] and indeed it has been found to work better than others tested. All the
combinations of these parameter values have been tested on 3 simulation runs, starting from the
same initial weights, to find the best available in terms of accelarated training.

A consideration that is worth mentioning is the difference between gradient and error function
evaluations at each epoch: for the BP, the BPM, the ABP and the SA one gradient evaluation and
one error function evaluation are necessary at each epoch; for BPS there is a number of additional
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Table 1: Learning parameters used in the experiments
Algorithm Texture classification Vowel spotting
BP η0 = 0.001 η0 = 0.0034

BPM η0 = 0.001 η0 = 0.0034

m = 0.9 m = 0.7

ABP η0 = 0.001 η0 = 0.0034

m = 0.9 m = 0.1

ηinc = 1.05 ηinc = 1.07

ηdec = 0.5 ηdec = 0.8

ratio = 1.04 ratio = 1.04

SA η0 = 0.001 η0 = 0.0034

u = 1.05 u = 1.3

d = 0.6 d = 0.7

BPS * *
∗ no heuristics required

error function evaluations when the Goldstein/Armijo condition (17) is not satisfied. Thus, we
compare the algorithms in terms of both gradient and error function evaluations. However, the
reader has to consider the fact that a gradient evaluation is more costly than an error function
evaluation (for example Møller [34] suggests to count a gradient evaluation three times more than
an error function evaluation).

5.1 Texture Classification Problem

The first experiment is a texture classification problem. A total of 12 Brodatz texture images [7]:
3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 (see Figure 1 in [31]) of size 512 × 512 is acquired
by a scanner at 150dpi. From each texture image 10 subimages of size 128 × 128 are randomly
selected, and the co–occurence method, introduced by Haralick [20] is applied. In the co–occurence
method, the relative frequencies of gray–level pairs of pixels at certain relative displacements are
computed and stored in a matrix. As suggested by other researchers [36, 54], the combination
of the nearest neighbor pairs at orientations 0o, 45o, 90o and 135o are used in the experiment.
10 sixteenth-dimensional training patterns are created from each image. A 16–8–12 FNN (224
weights, 20 biases) with sigmoid activations is trained to classify the patterns to 12 texture types.
The termination condition is a classification error CE < 3%.

Detailed results regarding the training performance of the algorithms are presented in Table
2, where µ denotes the mean number of gradient or error function evaluations required to obtain
convergence, σ the corresponding standard deviation, Min/Max the minimum and maximum
number of gradient or error function evaluations, and % denotes the percentage of simulations
that converge to a global minimum. Obviously, the number of gradient evaluations is equal to the
number of error function evaluations for the BP, the BPM, the ABP and the SA.

The results of Tables 2 suggest that BPS significantly outperforms BP and BPM in the number
of gradient and error function evaluations as well as in the percentage of successful simulations.
ABP exhibits the best performance of all methods tested, however it requires fine tuning five
heuristic parameters. SA is also faster than BPS needing only tuning three heuristic parameters,
but has smaller percentage of success than BPS.

The successfully trained FNNs are tested for their generalization capability using patterns from
20 subimages of the same size randomly selected from each image. To evaluate the generalization
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Table 2: Comparative results for the texture classification problem
Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %
BP 15839 3723.3 8271/25749 15839 3723.3 8271/25749 96
BPM 12422 2912.1 4182/18756 12422 2912.1 4182/18756 94
ABP 560 270.4 310/2052 560 270.4 310/2052 100
SA 704 2112.6 82/18750 704 2112.6 82/18750 88
BPS 791 512.3 417/5318 2185 1405.9 1116/14006 100

performance of the FNN the max rule is used, i.e. a test pattern is considered to be correctly
classified if the corresponding output neuron has the greatest value among the output neurons.
The average success rate classification for each algorithm was: BP=90%, BPM=90%, ABP=93.5%,
SA=93.6%, BPS=93%. These results confirm that increased training speed achieved by ABP, SA
and BPS affect by no means their generalization capability.

5.2 Vowel Spotting Problem

In the second experiment a 15–15–1 FNN (240 weights and 16 biases), based on neurons of hy-
perbolic tangent activations, is used for vowel spotting. Vowel spotting provides a preliminary
acoustic labeling of speech, which can be very important for both speech and speaker recognition
procedures. The speech signal, coming from a high quality microphone in a very quiet environment,
is recorded, sampled at 16KHz and digitized at 16–bit precision. The sampled speech data is then
segmented into 30ms frames with a 15ms sliding window in overlapping mode. After applying a
Hamming window, each frame is analyzed using the Perceptual Linear Predictive (PLP) speech
analysis technique to obtain the characteristic features of the signal. The choice of the proper
features is based on a comparative study of several speech parameters for speaker independent
speech recognition and speaker recognition purposes [50]. The PLP analysis includes: spectral
analysis, critical–band spectral resolution, equal–loudness pre–emphasis, intensity–loudness power
law, autoregressive modeling. It results in a 15th dimensional feature vector for each frame.

The FNN is trained as speaker independent using labelled training data from a large number
of speakers from the TIMIT database [14] and classifies the feature vectors into {−1,+1} for the
non–vowel/vowel model. The network is part of a text-independent speaker identification and
verification system which is based on using only the vowel part of the signal [13].

The fact that the system uses only the vowel part of the signal makes the cost of mistakenly
accepting a non-vowel and considering it as a vowel much more than the cost of rejecting a vowel and
considering it as non-vowel. A mistaken decision regarding a non-vowel will produce unpredictable
errors to the speaker classification module of the system that uses the response of the FNN and is
trained only with vowels [12, 13].

Thus, in order to minimize the false acceptance error rate which is more critical than the
false rejection error rate we polarize the training procedure by taking 317 non–vowel patterns
and 43 vowel patterns. The training terminates when the classification error is less than 2%.
After training, the generalization capability of the successfully trained FNNs is examined with 769
feature vectors taken from different utterances and speakers. In this examination, a small set of
rules is used. These rules are based on the principle that the cost of rejecting a vowel is much less
than the cost of mistakenly accepting a non-vowel and considering it as a vowel and concern the
distance, the duration and the amplitude of the responses of the FNN, [12, 13, 51]. The results of
the training phase are shown in Table 4, where the abbreviations are as in Table 2.

The resuts of Table 3 show that BPS compares favourably on the number of gradient evaluations
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Table 3: Comparative results for the vowel spotting problem
Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %
BP 905 1067.5 393/6686 905 1067.5 393/6686 63
BPM 802 1852.2 381/9881 802 1852.2 381/9881 57
ABP 1146 1374.4 302/6559 1146 1374.4 302/6559 73
SA 250 157.5 118/951 250 157.5 118/951 36
BPS 362 358.5 96/1580 1756 1692.1 459/7396 64

to BP, BPM and ABP. ABP exhibits the slowest convergence but has the most reliable performance
regading the number of successful simulations. Note that SA provides the fastest training, but also
exhibits the worst percentage of success. On the other hand, it has the best performance regarding
the generalization performance (see Table 5). BPS also improves the error rate achieved by the
BP by 1%. Thus, the average performance of the BPS is satisfactory.

With regards to generalization, the adaptive methods provide comparable performance which
on the the average improves of the error rate percentage achieved by BP–tranined FNNs by 2%.
However, BPM trained FNNs did not provide any improvement.

6 Conclusions

The papers analyzed adaptive learning with a different learning rate for each weight as a nonlinear
Jacobi process. Along this line an algorithm with a self-determined learning rate for each weight
has been presented. A model for the analysis of the local and global convergence of the algorithm
has been proposed. It was shown that the asymptotic rate of convergence of the training algorithm
does not depend on the multi–step subminimization methods. However this result is not necessarily
related with the convergence speed when the algorithm is away from the minimizer. With regards
to global convergence, the Goldstein/Armijo conditions have been appropriately adapted to secure
the convergence of the algorithm.

The algorithm compares satisfactory with other popular training algorithms without using
highly problem–dependent heuristic parameters. Its performance in the two reported experiments
is promising.

In a future contribution we will focus on the effects of property Aπ in FNN training as well as
on the issue of global efficiency, or global rate of convergence, of the training algorithm, which is
related to the estimation of the error function reduction at every epoch.
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